
Design of an Object-Oriented Framework

for Data Format Classification and

Transformation

Dustin Graves

dgraves@gwu.edu

May 9, 2008

Core Concepts

• Management and Manipulation of live data

streams

• Dynamic composition of data processing

pipelines to transform stream data

• Efficient processing of high-rate streams

• Reduction of application code duplication

Framework Overview

• Facilitate comprehensive data exchange among
software applications

• Encapsulate common elements of the data
interchange process

• Assist with development of interoperable applications
– Sharing data among software using different formats

• Interoperation with legacy software

• Conversion of non-standard/proprietary formats

• Exploit parallelism existing among independent
streams and independent objects within streams
• Concurrently process multiple high-rate data streams

• Hide parallel programming details from framework user

• Scale from small-scale to large-scale systems

Motivation

• Integration of software with military test and training ranges
– Sensor networks for tracking range activities composed of

applications and devices from different vendors and eras

• Different approaches to interoperability with sensor networks
– Consumer is responsible for data format conversion

• Inefficient, duplication of effort, does not scale well

– Producer is responsible for data format conversion
• Each producer generates data represented with a “standard” format

• Addition of new data producers to the system does not require
modification to existing consumers

– Gateways are responsible for data format conversions
• Not required to directly modify consumers and producers for system

integration

• Connect multiple ranges, each with its own native data formats

Approaches to Interoperability

Sensor X Sensor Y Sensor Z

Converter

Vis.

App.

Format B

Visualization

Workstation

Converter

Vis.

App.

Format B

Visualization

Workstation

Format ZFormat YFormat X

Converter

Format A

Database Server

Sensor X Sensor Y Sensor Z

Converter

Vis.

App.

Format B

Visualization

Workstation

Converter

Vis.

App.

Format B

Visualization

Workstation

Format ZFormat YFormat X

Converter

Format A

Database Server

Format B

Converter

Sensor network with multiple data formats:

Consumer must perform format conversion

Sensor network with a common data format:

Producer or gateway must perform format

conversion

Related Work

• Principles of object-oriented design

• Evolving frameworks

• Design patterns

• Linear types for packet processing

– The PACLANG programming language

Properties of Data Formats

• Assign structure to data such that it may be

processed by an application or understood

by a human

• Important properties of data formats:

– All data that may be safely processed by an

application has structure

– Structure may be separated from the

associated data

– Structure may be specified at run-time

Properties of Data Streams

• Sequences of digitally encoded signals
representing information in transmission

• May consist of aggregations of data describing
multiple objects

• Categories of data streams:
– Single object, single format: Stream contains

messages of a single type describing a single object

– Single object, multiple formats: Stream contains
messages of multiple types describing a single object

– Multiple objects, single format: Stream contains
messages of a single type describing multiple objects

– Multiple objects, multiple formats: Stream contains
messages of multiple types describing multiple objects

Our Work: Exploiting Parallelism

• Potential for exploiting data independence within
streams transmitting multiple objects and formats

• Independence existing among individual items within
aggregate streams may be exploited for concurrent
processing
– Partial independence may require serialization of some

processing stages

– Full independence allows unrestricted processing, providing
greater scalability

• Data independence is not limited to streams containing
multiple items
– Blocks of data transmitted by single object, single format

streams can potentially be processed concurrently
• Need to ensure the preservation of block ordering

Framework Design

• A white-box framework to manage data communication
and processing

• Data is received and transmitted through abstractions
of communication resources

• Data received from a communication resource is
submitted to a data processing pipeline
– A linear type system ensures that each processing pipeline

has unique ownership of data items

– Pipeline stages performing write operations must contain
exactly one reference to a data item

– Stages performing read-only operations may contain
multiple references to a data item.

• The application developer provides application-specific
data formats and transformations for use with the
framework

Framework Modules

• The framework consists of two main modules
for monitoring communication resources and
transforming data
– The Source Monitor manages communication

resources

– The Pipeline Executor manages data processing
pipelines

External

Data

Sources

Source

Monitor

Framework

Pipeline

Executor

Source Monitor

• Responsible for detecting and executing pending
communication events from communication
resources
– May operate within a dedicated thread

– Communication resources are processed concurrently

– Methods for registering, querying, and deregistering
communication resources must be thread safe

External

Data

Sources

Source (IN)

Source Monitor

Source (INOUT)

Source (OUT)

Pipeline

Executor

Delegate

Delegate

Pipeline Executor

• Responsible for managing data processing
pipelines to filter, transform, and translate data
received from communication resources
– May operate within a dedicated thread

– Pipelines are processed concurrently

– Methods for adding, modifying, and removing pipelines
must be thread safe

Pipeline Executor

Delegate Pipeline
Source

Monitor

External

Data

Sources

Pipeline

Implementation Results

• Phylum is an implementation of the framework using C++ and
the Intel Threading Building Blocks library
– Template-based algorithms for parallel processing provided by

TBB are used extensively

• Supports dynamic creation of data formats
– Provides a generic class encapsulating a collection of fields of

different types

– Each field contains one or more elements

– New data formats are created through composition of fields

• Addresses memory performance issues
– Attempt to reduce impact of constant data format allocation and

destruction by recycling memory with a free list
• Provides a free list container for each format type

• Requires locking within concurrent environments, limiting scalability

– Alternate choice of a scalable memory allocator based on McRT-
Malloc

– Free list or scalable allocator selection is made at compile-time

Future Direction

• Continued framework development
– Libraries of fine-grained objects

– Black-box framework

• Development of a domain specific language
– Run-time definition, creation, and manipulation of

framework objects from within a language
interpreter

– Distributed language with each interpreter acting
as a node within a network of interpreters

– Remotely and securely manipulate other
interpreters

• Creation of visualization tools for monitoring
the flow of data through the framework

Backup Slides

Interchange Process

• The data interchange process consists of a
number of common operations

– Receive data from a communication resource
• May need to detect availability of data

– Decode or de-serialize data (if necessary)

– Transform/prepare data for consumption
• Discard invalid data

• Transform individual fields of a data format

• Reorganize fields of a data format relative to each other

– Submit data for processing
• Submit to application, submit to communication

resource , re-submit to framework

Framework Requirements

• Support multiple communication resource types

• Observe communication resource state and process
communication events without disrupting normal
application operation

• Support definition of new data formats at the
application level

• Identify and map unstructured data received from an
I/O resource to a structured format

• Apply transformations to prepare data for consumption

• Support definition of application specific
transformations and methods for data consumption

• Allow the end-user, with limited knowledge of
software-engineering, to define new data formats and
transformations

Related Work: OOD

• Characterizing the extent of component

reuse with object domains

– Foundation-domain: General purposes classes

not specific to any environment

– Architectural-domain: Classes particular to a

specific architectural environment

– Business-domain: Classes particular to a

specific industry

– Application-domain: Classes particular to a

specific application

Related Work: Evolving

Frameworks
• Frameworks capture the general design of components

common to specific types of applications
– White-box Frameworks: Provide abstract classes to be extended

when adding application-specific code

– Black-box Frameworks: Provide libraries of predefined subclasses
containing application-specific code

• Start with a white-box framework

• Introduce new components with each framework application

• Identify hot-spots of application specific code and separate
generic functionality from application specific functionality

• Library of fine-grained, concrete objects grows large enough to
form a black-box framework

• Create tools for constructing applications through composition
of framework components

• Create language tools for inspecting and debugging framework
based applications

Related Work: Design Patterns

• Describe common elements of reusable object-
oriented software

– Three categories of design pattern: creational,
structural and behavioral

• Two important communication specific patterns for
demultiplexing and dispatching communication
events

– Reactor pattern: Behavioral pattern to synchronously
monitor communication resources and dispatch
communication events as they occur

– Proactor pattern: Behavioral pattern to asynchronously
monitor communication resources and
process/dispatch communication events as they occur

Related Work: Linear Types

• Linear types may have exactly one reference and may
be neither duplicated nor discarded
– Explicit specification of type allocation and destruction

– Safe modification within concurrent environments

• Relax requirements such that each value may have
multiple read-only references

• Allow multiple references when providing a complete
copy of a value to each reference

• PACLANG is a concurrent, linear-typed language for
packet processing
– Uses a linear type system providing unique ownership of

packets to a single thread

– Multiple references are allowed within a thread

– Eliminates the need for locking and allows threads to safely
transfer packet ownership to other threads

