Design of an Object-Oriented Framework
for Data Format Classification and
Transformation

Dustin Graves
dgraves@gwu.edu
May 9, 2008

Core Concepts

Management and Manipulation of live data
streams

Dynamic composition of data processing
pipelines to transform stream data

Efficient processing of high-rate streams
Reduction of application code duplication

Framework Overview

Facilitate comprehensive data exchange among
software applications

Encapsulate common elements of the data
Interchange process

Assist with development of interoperable applications

— Sharing data among software using different formats

 Interoperation with legacy software
» Conversion of non-standard/proprietary formats

Exploit parallelism existing among independent
streams and independent objects within streams
« Concurrently process multiple high-rate data streams
« Hide parallel programming details from framework user
« Scale from small-scale to large-scale systems

Motivation

* Integration of software with military test and training ranges

— Sensor networks for tracking range activities composed of
applications and devices from different vendors and eras

« Different approaches to interoperability with sensor networks

— Consumer is responsible for data format conversion
« Inefficient, duplication of effort, does not scale well

— Producer is responsible for data format conversion
« Each producer generates data represented with a “standard” format

« Addition of new data producers to the system does not require
modification to existing consumers

— Gateways are responsible for data format conversions

* Not required to directly modify consumers and producers for system
integration

» Connect multiple ranges, each with its own native data formats

Approaches to

Interoperabillity

[Sensor X] [Sensor Y] [Sensor Z]

O

Database Server

Vis.
App.

Visualization
Workstation

Format X FormatY Format Z
—> 4—
v v v
Converter Converter Converter
Format A Format B Format B
v \ 4 v

Vis.
App.

Visualization
Workstation

Sensor network with multiple data formats:

Consumer must perform format conversion

[Sensor X] [Sensor Y] [Sensor Z]

Format X Format Y Format Z
\4 v \4
Converter Converter Converter
Format B Format B Format B
—> <—

Converter |«

Format A

\ 4

O

Database Server

y

Vis.
App.

Visualization
Workstation

\ 4

Vis.
App.

Visualization
Workstation

Sensor network with a common data format:

Producer or gateway must perform format

conversion

Related Work

Principles of object-oriented design
Evolving frameworks
Design patterns

Linear types for packet processing
— The PACLANG programming language

Properties of Data Formats

» Assign structure to data such that it may be
processed by an application or understood

by a human
* Important properties of data formats:

— All data that may be safely processed by an
application has structure

— Structure may be separated from the
associated data

— Structure may be specified at run-time

Properties of Data Streams

Sequences of digitally encoded signals
representing information in transmission

May consist of aggregations of data describing
multiple objects
Categories of data streams:

— Single object, single format: Stream contains
messages of a single type describing a single object

— Single object, multiple formats: Stream contains
messages of multiple types describing a single object

— Multiple objects, single format: Stream contains
messages of a single type describing multiple objects

— Multiple objects, multiple formats: Stream contains
messages of multiple types describing multiple objects

Our Work: Exploiting Parallelism

- Potential for exploiting data independence within
streams transmitting multiple objects and formats

* Independence existing among individual items within
aggregate streams may be exploited for concurrent
processing

— Partial independence may require serialization of some
processing stages

— Full independence allows unrestricted processing, providing
greater scalability
- Data independence Is not limited to streams containing
multiple items

— Blocks of data transmitted by single object, single format
streams can potentially be processed concurrently

* Need to ensure the preservation of block ordering

Framework Design

A white-box framework to manage data communication
and processing

Data Is received and transmitted through abstractions
of communication resources

Data received from a communication resource Is
submitted to a data processing pipeline

— Alinear type system ensures that each processing pipeline
has unique ownership of data items

— Pipeline stages performing write operations must contain
exactly one reference to a data item

— Stages performing read-only operations may contain
multiple references to a data item.

The application developer provides application-specific
data formats and transformations for use with the
framework

Framework Modules

 The framework consists of two main modules
for monitoring communication resources and
transforming data

— The Source Monitor manages communication
resources

— The Pipeline Executor manages data processing
pipelines

Framework

\ 4
StEiel Source Pipeline
Data .
Monitor Executor
Sources
A

Source Monitor

* Responsible for detecting and executing pending
communication events from communication
resources

— May operate within a dedicated thread
— Communication resources are processed concurrently

— Methods for registering, querying, and deregistering
communication resources must be thread safe

Source Monitor
External
Data —>[Source (IN)]—> Delegate -
Sources [~ Pipeline
\[Source (INOUT)]—> Delegate | — Executor
Source (OUT)]:
|

)

Pipeline Executor

* Responsible for managing data processing
pipelines to filter, transform, and translate data
received from communication resources

— May operate within a dedicated thread
— Pipelines are processed concurrently

— Methods for adding, modifying, and removing pipelines
must be thread safe

Pipeline Executor

External S y
Data » Delegate —>[Pipeline]—
Monltor
Sources
. |—> Pipeline

....................................

Implementation Results

Phylum is an implementation of the framework using C++ and
the Intel Threading Building Blocks library

— Template-based algorithms for parallel processing provided by
TBB are used extensively

Supports dynamic creation of data formats

— Provides a generic class encapsulating a collection of fields of
different types

— Each field contains one or more elements
— New data formats are created through composition of fields

Addresses memory performance issues

— Attempt to reduce impact of constant data format allocation and
destruction by recycling memory with a free list
* Provides a free list container for each format type
* Requires locking within concurrent environments, limiting scalability

— Alternate choice of a scalable memory allocator based on McRT-
Malloc

— Free list or scalable allocator selection is made at compile-time

Future Direction

» Continued framework development
— Libraries of fine-grained objects
— Black-box framework

* Development of a domain specific language

— Run-time definition, creation, and manipulation of
framework objects from within a language
interpreter

— Distributed language with each interpreter acting
as a node within a network of interpreters

— Remotely and securely manipulate other
Interpreters

» Creation of visualization tools for monitoring
the flow of data through the framework

Backup Slides

Interchange Process

* The data Iinterchange process consists of a
number of common operations

— Recelve data from a communication resource
« May need to detect availability of data

— Decode or de-serialize data (if necessary)

— Transform/prepare data for consumption
 Discard invalid data
« Transform individual fields of a data format
« Reorganize fields of a data format relative to each other

— Submit data for processing

« Submit to application, submit to communication
resource , re-submit to framework

Framework Requirements

Support multiple communication resource types

Observe communication resource state and process
communication events without disrupting normal
application operation

Support definition of new data formats at the
application level

|ldentify and map unstructured data received from an
I/O resource to a structured format

Apply transformations to prepare data for consumption

Support definition of application specific |
transformations and methods for data consumption

Allow the end-user, with limited knowledge of
software-engineering, to define new data formats and
transformations

Related Work: OOD

« Characterizing the extent of component
reuse with object domains

— Foundation-domain: General purposes classes
not specific to any environment

— Architectural-domain: Classes particular to a
specific architectural environment

— Business-domain: Classes particular to a
specific industry

— Application-domain: Classes particular to a
specific application

Related Work: Evolving
Frameworks

Frameworks capture the general design of components
common to specific types of applications

— White-box Frameworks: Provide abstract classes to be extended
when adding application-specific code

— Black-box Frameworks: Provide libraries of predefined subclasses
containing application-specific code

Start with a white-box framework
Introduce new components with each framework application

Identify hot-spots of application specific code and separate
generic functionality from application specific functionality

Library of fine-grained, concrete objects grows large enough to
form a black-box framework

Create tools for constructing applications through composition
of framework components

Create language tools for inspecting and debugging framework
based applications

Related Work: Design Patterns

* Describe common elements of reusable object-
oriented software

— Three categories of design pattern: creational,
structural and behavioral

* Two Important communication specific patterns for
demultiplexing and dispatching communication
events

— Reactor pattern: Behavioral pattern to synchronously
monitor communication resources and dispatch
communication events as they occur

— Proactor pattern: Behavioral pattern to asynchronously
monitor communication resources and
process/dispatch communication events as they occur

Related Work: Linear Types

Linear types may have exactly one reference and may
be neither duplicated nor discarded

— EXxplicit specification of type allocation and destruction
— Safe modification within concurrent environments

Relax requirements such that each value may have
multiple read-only references

Allow multiple references when providing a complete
copy of a value to each reference

PACLANG Is a concurrent, linear-typed language for
packet processing

— Uses a linear type system providing unique ownership of
packets to a single thread

— Multiple references are allowed within a thread

— Eliminates the need for locking and allows threads to safely
transfer packet ownership to other threads

